622. Polarisation in Conjugated Systems. Part I. The Refractions and Electric Dipole Moments of Some Derivatives of Benzene, Styrene, Diphenyl, Stilbene, and 1:4-Diphenylbutadiene.

By K. B. Everard, L. Kumar, and L. E. Sutton.

The dipole moments of 44 compounds have been measured in order further to elucidate the nature of the polarisation which takes place when one or more groups are substituted into a conjugated system. Part I contains all the experimental observations. The theoretical difficulties involved in estimating distortion polarisations of compounds having large dispersions are discussed; it is suggested that the use of the so-called "calculated" $[R]_{\mathfrak{D}}$ values is less hazardous than that of the observed ones in such cases.

Comparison is made, when possible, between dipole moments already published and those now reported. The choice of dipole moment values from the literature is considered; and a critical list for simple benzene and paraffin derivatives is given.

It is concluded that styrene probably has a moment of ca. 0.1 D. , and that 2:4:6-trimethylstilbene and triphenylethylene may not be quite nonpolar. In the last two compounds there is evidence that conjugation is sterically inhibited.

This investigation began in 1948 when we were invited by the Chester Beatty Research Institute, Royal Cancer Hospital, London, to measure the electric dipole moments of a large number of rare compounds. Most of them were derivatives of stilbene which had been synthesised because of their physiological interest : several are either carcinogenic or inhibit the growth of tumours, according to the experimental conditions (Haddow, Harris, Kon, and Roe, Phil. Trans., 1948, A, 241, 147).

One purpose of the investigation was to add to the physical chemistry of these important compounds, in an attempt to bring to light any chemicophysiological relations. Related information (spectroscopic, etc.) has already been, or is about to be, published (Haddow et al., loc. cit.; Thompson, Vago, Corfield, and Orr, J., 1950, 214 ; Coulson and Jacobs, J., 1949, 1983 ; Pullman, Compt. rend., 1948, 226, 486; Butler, Nature, 1950, 166, 18; Beale and Liberman, to be published).

However, this aspect of the work is treated only incidentally here; the emphasis is on physicochemical problems. It was expected that the moments of some compounds would throw light on several interesting topics covered by the general title. As the investigation proceeded, it was found that certain questions were incompletely answered; so other com-pounds-mostly derivatives of styrene and diphenyl-were prepared.

Among the topics discussed in detail later are the dependence of the polarisation of a conjugated system, bearing a polar group, on : (i) the nature of the system (Part IV) and of the group (Part V), (ii) the position of attachment (Part III), and (iii) the presence in the molecule of other groups capable of steric interaction (Part II) or electronic interaction (Part VI).

This paper contains all the experimental details, including some optical-dispersion measurements. It was found at the outset of the work that the measured refractions of the more highly conjugated compounds were appreciably greater than those calculated by adding the refractions of the constituent fragments of the molecules. The disparity was too large to be ignored, since the resulting uncertainty in the dipole moments was in some cases about ten times the experimental error. It arises from the unusually large dispersions shown by molecules with such extensive conjugated systems; and the dispersion measurements were undertaken in order to find how the distortion polarisations could best be estimated in the peculiar circumstances.

The dipole moments which have been obtained are compared with any previously reported values; and a critical list of moments needed in the later discussion is given, with some notes on the selection of such data.

Finally, the values found for the moments of stilbene, 2:4:6-trimethylstilbene, and triphenylethylene are discussed.

Experimental.

Preparation and Purification of Materials.-Benzene. This was purified in the usual way (Everard and Sutton, J., 1949, 2312).

Styrene. A B.D.H. specimen was dried $\left(\mathrm{CaCl}_{2}\right)$ and twice fractionated in a vacuum; the fraction of b. p. $36.5-37^{\circ} / 11 \mathrm{~mm}$. was collected and used the same day. Beilstein's "Handbuch" (lst revision) quotes b. p. $34 \cdot 2^{\circ} / 10 \mathrm{~mm}$. and b. p. $40^{\circ} / 14 \mathrm{~mm}$.

Benzonitrile. Fractionation of two different commercial specimens having given an unsatisfactory product, the material was made from pure benzamide (m. p. $127-128^{\circ}$) by heating it with phosphoric anhydride for 15 minutes and distilling the product (Buckton and Hofmann, J., 1857, 9, 255). The distillate, which melted at -14°, was redistilled over phosphoric anhydride at $192-193^{\circ}$, and then had m. p. $-13 \cdot 1^{\circ}$ to -13.6° (Weissberger and Proskauer, "Organic Solvents," O.U.P., 1935, p. 75, give $-13 \cdot 1^{\circ}$). Before use four-fifths were slowly frozen and the rest decanted.
p-Phenylenediamine. A B.D.H. specimen was recrystallised from ether, water, and benzeneethanol. It then melted at $141-142^{\circ}$ (corr.). Beilstein's "Handbuch" (2nd revision) quotes 142°.

NNN'N'-Tetramethyl-p-phenylenediamine. The hydrochloride (B.D.H.) was treated with sodium hydroxide solution and warmed, and the product filtered off. The dry precipitate was thrice sublimed in a vacuum, whereafter it had m. p. 48.5-49 . Beilstein's "Handbuch" (2nd revision) quotes $50-51^{\circ}$.

4-Chlorostyrene. This was prepared from p-chloroacetophenone by reduction and then dehydration. A solution of the phenone (50 g ., 0.32 mole) in ether (100 ml .) was added gradually with cooling to ethereal lithium aluminium hydride (250 ml .) ($\equiv 0.65$ mole of hydrogen) (cf. Finholt, Bond, and Schlesinger, J. Amer. Chem. Soc., 1947, 69, 1199), and the mixture agitated for 15 minutes. Dilute hydrochloric acid was then cautiously added until a clear aqueous layer was obtained. The ethereal layer was separated and, together with an ethereal extract of the aqueous layer, was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residual oil on distillation afforded $1-p$-chlorophenylethanol (42 g .), b. p. $87-87 \cdot 5^{\circ} / 1 \mathrm{~mm}$. (Found : C, $60.9 ; \mathrm{H}, 6.1$; $\mathrm{Cl}, 22 \cdot 4$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{OCl}: \mathrm{C}, 61 \cdot 3 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{Cl}, 22.6 \%$).

Potassium hydrogen sulphate (3.5 g .) and quinol (0.5 g .) were fused at $210-220^{\circ}$ in a $25-\mathrm{ml}$. Claisen flask immersed in an oil-bath. Nitrogen, purified by passing successively through pyrogallol solution, concentrated sulphuric acid, and tubes containing potassium hydroxide pellets, was introduced below the surface of the melt, and a pressure of $90-100 \mathrm{~mm}$. maintained over it. $1-p$-Chlorophenylethanol (8 g .) was added at the rate of $1 \mathrm{drop} / \mathrm{sec}$. The distillate, dissolved in peroxide-free ether, was washed with 5% sodium hydroxide solution and saturated calcium chloride solution, and dried $\left(\mathrm{CaCl}_{2}\right)$. Quinol (0.5 g .) in ether was added, the ether distilled off in a nitrogen atmosphere, clean allglass apparatus being used, and the styrene fractionated with a 4-plate Dufton column (cf. Marvel and Schertz, J. Amer. Chem. Soc., 1943, 65, 2054 ; Brooks, ibid., 1944, 66, 1295). The fraction (2.5 g .) of b. p. $73.5-74 \cdot 5^{\circ} / 6-7 \mathrm{~mm}$. was used.

4-Bromostyrene. This was prepared similarly. l-p-Bromophenylethanol was obtained as a colourless oil, b. p. $115-118^{\circ} / 1-2 \mathrm{~mm}$. (Found: C, 48.1 ; $\mathrm{H}, 4.5$; $\mathrm{Br}, 39.5$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OBr}$: C, $47 \cdot 8 ; \mathrm{H}, 4 \cdot 5 ; \mathrm{Br}, 39 \cdot 8 \%$), and 4 -bromostyrene as an almost colourless oil, b. p. $94-95^{\circ} / 4-5 \mathrm{~mm}$. (Found : C, $52.6 ; \mathrm{H}, 4 \cdot 1$; $\mathrm{Br}, 43.5$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}: \mathrm{C}, 52.5 ; \mathrm{H}, 3.8 ; \mathrm{Br}, 43 \cdot 7 \%$).

The b. p.s of 4 -chlorostyrene and 4-bromostyrene are markedly higher than those reported in the literature. These discrepancies were discovered only in the last stages of the preparation of the paper, and they have not yet been elucidated. It is therefore best that the dipole moments of these compounds should be regarded as provisional.

4-Nitrostyrene. This compound, prepared according to Strassburg, Gregg, and Walling (J. Amer. Chem. Soc., 1947, 69, 2141), had the same m. p., $21 \cdot 4^{\circ}$, as they observed (Found : C, 64.5; H, 4.9; N, 9.4. Calc. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 64 \cdot 4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.4 \%$).

4-Dimethylaminostyrene. This was prepared similarly, except that it was recovered pure from its ethereal solution as described above for 4 -chlorostyrene. It had m. p. 16.5 (Strassburg et al., loc. cit., give 16.8°).
β-Nitrostyrene. A B.D.H. specimen, twice recrystallised from ligroin, had m. p. $57-57 \cdot 5^{\circ}$ (Beilstein's " Handbuch" quotes 58°).

Benzidine. "AnalaR" material was twice recrystallised from ethanol and sublimed in a vacuum; it had m. p. 125° (Kofler and Lindpaintner, Mikrochem., 1938, 24, 43, give m. p. 125° inter al.).

NNN' N^{\prime}-Tetramethylbenzidine. This was prepared by oxidising dimethylaniline (Willstätter and Kalb, Ber., 1904, 37,3761). It was purified by being recrystallised twice from benzene and thrice from amyl alcohol, and finally sublimed in a vacuum. It had m. p. 195-196 ${ }^{\circ}$ (corr.) ; Beilstein's " Handbuch " quotes $193.5^{\circ}, 195^{\circ}, 197^{\circ}$, and 198°.

4-Cyanodiphenyl. This compound was made by the Sandmeyer reaction (cf. Kaiser, Annalen, 1890, 257,100) and was then recrystallised from ethanol to constant m. p., 86-86.5 ${ }^{\circ}$; Beilstein's " Handbuch " (2nd revision) quotes 82° and 88°.

4-Bromodiphenyl. This was made and purified similarly. It had m. p. 88.5 ; Beilstein's "Handbuch " (2nd revision) quotes $89-90^{\circ}$ and $91 \cdot 2^{\circ}$.

4-Nitrodiphenyl. A B.D.H. specimen, twice recrystallised from ethanol, melted at $113 \cdot 5-114^{\circ}$ (corr.) ; Beilstein's " Handbuch " (2nd revision) quotes 114-115 ${ }^{\circ}$.

4-Dimethylaminodiphenyl. B.D.H. 4-aminodiphenyl was methylated by Bell and Kenyon's method ($J ., 1926,2705$). The product was twice recrystallised from ethanol, and then thrice more without change of m. p., 120° (corr.); Bell and Kenyon give 123°, and Evans and Williams (J., 1939, 1199) give 122°.

Stilbene. Stilbene was purified by three recrystallisations from ethanol followed by vacuum sublimation.

The remaining compounds were obtained from the Chester Beatty Research Institute. They had been prepared as described by Haddow, Harris, Kon, and Roe (loc. cit.), and were purified by chromatography and recrystallisation as also described there, either in Oxford or at the Institute, not more than $c a .1$ month before examination. Light was excluded from the materials during storage and (except for red or dim white light) until dielectric-constant measurements had been completed on the solutions, owing to the danger of isomerisation; there was no evidence that this ever occurred during measurements.

The following special details may be noted. 4-Bromostilbene was found to be particularly unstable, and was recrystallised from ethanol immediately before examination. Triphenylethylene, though scrupulously purified, had a rather low m. p., but was spectroscopically pure. Spectroscopic examination also showed that the 1-p-dimethylaminophenyl-4-phenylbuta-1:3-diene used was the trans-transisomer (R. N. Beale, private communication). It is assumed from the method of preparation, and confirmed in many cases by the spectra, that all the compounds examined had trans-configurations (except cis-4-bromo-4'-nitrostilbene).

The m. p.s of the specimens used were as follows; they are uncorrected unless italicised The numerals in Clarendon type denote the names of the compounds as given in Tables V and VI : 2, 141$142^{\circ}$; 3, $106^{\circ} ; 4,119^{\circ} ; 5,150^{\circ} ; 6,116^{\circ} ; 7,55^{\circ}$; 8, $76-77^{\circ}$; $9,131-132^{\circ}$; $10,78-79^{\circ}$; $11,84-$ 85°; $12,154-155^{\circ}$; $13,175-176^{\circ}$; 28, 213-214 $; 29,138^{\circ}$; $30,81^{\circ}$; $31,200^{\circ}$; $32,105^{\circ}$; $33,220^{\circ}$; $34,72^{\circ} ; 35,98-99^{\circ} ; 36,149^{\circ}$; $37,79^{\circ}$; $38,255^{\circ}$; $39,78.5-79^{\circ} ; 40,133^{\circ} ; 41,124^{\circ} ; 42,51.5-52^{\circ}$; $43,70^{\circ}$; 44, 181-182 ${ }^{\circ}$.

Physical Measurements.-As many of the substances were available in only 0.1-g. quantities, the small-scale technique developed by Everard and Sutton ($J ., 1951,16$) was widely employed. For the other substances the older apparatus for l-g. quantities was used. Descriptions of, or references to, procedure will be found in the paper just cited.

In several cases, because of the insolubility of the solute, it was necessary to warm judiciously the closed vessel containing the two phases, then to cool it rapidly to $c a .25^{\circ}$ and to make the dielectricconstant measurement: In this way observations could be made on somewhat supersaturated solutions.

Because they were made on dilute solutions, the accuracy of the dispersion measurements is less than could have been attained if such measurements had been the sole object of examining the compounds. Since, however, this was a subsidiary object, we were content (and often compelled) to sacrifice some accuracy so as to save time and materials. We draw conclusions only from the dispersion data as a whole, but not from any particular measurement.

Refractive-index values for solutions of compounds 1-13 were measured with an interferometer and later found erroneous (see Everard, Hill, and Sutton, Trans. Favaday Soc., 1950, 46, 417), but a Pulfrich refractometer with divided cell was used for the remaining compounds, except benzonitrile.

Polarisations, refractions, dispersions, and dipole moments were computed as described by Everard and Sutton ($\left(., 1951,16\right.$), except that "calculated " values of $[R]_{\mathbf{D}}$ were used for the distortion polarisations (see Discussion) ; these were based on data in Landolt-Börnstein's "Tabellen" (both the original work and supplementary volumes), and the following $[R]_{\mathrm{D}}$ values : styrene, 36.49 (" Selected Values

* For an explanation of the method of presentation in Tables I-VI, see p. 2811.

Compd.	Soln.	$10^{6} \omega$.	ε.	v.	$10^{5} \Delta n_{\text {d }}$.	Compd.	Soln.	$10^{6} \omega$.	ε.	v.	$10^{5} \Delta n_{\text {D }}$.
14	1	1,947	$2 \cdot 3067$	1-14434	7	29	1	2,490	$2 \cdot 2768$	$1 \cdot 14423$	
	2	2,937	$2 \cdot 3231$	1-14413	10		2	4,673	$2 \cdot 2799$	$1 \cdot 14341$	
	3	6,835	$2 \cdot 3915$	$1 \cdot 14362$	21		3	7,279	2.2836	1-14218	
	4	9,806	$2 \cdot 4423$	$1-14317$	32		4	8,652			99
15	1	902	$2 \cdot 2752$	1-14632			5	9,119	$2 \cdot 2866$	$1 \cdot 14159$	
	2	1,879	$2 \cdot 2781$	$1 \cdot 14592$	-	30	1	2,589	$2 \cdot 2920$	$1 \cdot 14403$	
	3	2,440	-	$1 \cdot 14583$	26		2	3,260	2.2969	$1 \cdot 14357$	
	4	3,833	$2 \cdot 2840$		40		3	8,936	$2 \cdot 3403$	1-14091	98
	5	4,262	2.2851	-	45		4	10,121	$2 \cdot 3492$	1-14038	109
16	1	1,836	2.2745	1-14585	6	31	1	1,121	$2 \cdot 2770$	1-14404	27
	2	12,533	$2 \cdot 2850$	$1 \cdot 14465$	81		2	5,061	$2 \cdot 2920$	$1 \cdot 14218$	83
	3	15,960	2.2887	1-14422	102		3 4	8,895	$2 \cdot 3065$ 2.3156	$1-14042$ 1.13916	148
17	1	977	2.2734	1-14419	12	32					
	2	3,771	2.2776	1.14320	25	32	2	1,500	$2 \cdot 2776$ $2 \cdot 3035$	1.14410 1.14200	29 184
	3	4,397	$2 \cdot 2791$	$1 \cdot 14293$	6		3	11,555	$2 \cdot 3114$	$1 \cdot 14131$	214
	4	14,254	$2 \cdot 2939$	$1 \cdot 13865$	69	33	1	1,560	2-2842	$1 \cdot 14425$	29
18	1	3,630	$2 \cdot 2792$	$1 \cdot 14392$			2	6,301	$2 \cdot 3180$	$1 \cdot 14290$	119
	2	3,925	$2 \cdot 2803$	1-14389	30		3	7,864	$2 \cdot 3297$	$1 \cdot 14236$	157
	3	17,201	$2 \cdot 3058$	1.14080	104	34	1	4,177	$2 \cdot 3117$	$1 \cdot 14365$	54
	4	23,107	$2 \cdot 3163$	1-13982		34	1	4,177	$2 \cdot 3117$	$1 \cdot 14365$	54
19	1	1,776	$2 \cdot 2794$	$1 \cdot 14441$		35	1	2,419 10,334	$2 \cdot 2811$ $2 \cdot 3089$	1.14416 1.14284	47 190
	2	5,371	2.2929 2.2930	1.14398 1.14389	53		3	11,987	$2 \cdot 3143$	$1 \cdot 14254$	217
	3 4	5,486 6,338	2.2930 2.2960	$1 \cdot 14389$ 1.14383	53 64		1	$\begin{array}{r}1,956 \\ \hline 256\end{array}$	$2 \cdot 2762$	1-14516	217
	4	6,338	$2 \cdot 2960$	$1 \cdot 14383$	64	36	2	956 2,071	$2 \cdot 2762$ $2 \cdot 2797$	$1 \cdot 14516$ 1.14473	二
20	1	1,632	$2 \cdot 2968$	$1 \cdot 14597$	17		3	2,964	2-2824	1-14475	
	2	4,058	$2 \cdot 3330$	$1 \cdot 14513$	34		4	4,213	$2 \cdot 2862$	1-14439	
	3	8,026	$2 \cdot 3931$	$1 \cdot 14386$	79		5	7,932	$2 \cdot 2985$	$1 \cdot 14375$	
21	1	1,142	2.2877	$1 \cdot 14431$	8		6	9,097	-	-	183
	2	5,728	$2 \cdot 3483$	1-14302	1	37		1,812	$2 \cdot 2774$	$1 \cdot 14422$	28
	3	6,377	$2 \cdot 3568$	1-14284	41		2	7,245	$2 \cdot 2913$	$1 \cdot 14332$	109
22	1	340	$2 \cdot 2734$	1-14644	-		3 4	9,099 19,835	$2 \cdot 2960$	1-14299	
	2	2,368	2-2777	$1 \cdot 14577$			4	19,835	-	-	300
	3	5,660	-	-	101	38		243	$2 \cdot 2779$	$1 \cdot 14450$	-
	4	6,975	$2 \cdot 2865$	1-14442	120		2	877	$2 \cdot 2924$	1-14428	32
	5	7,146	2.2865	$1 \cdot 14435$	131		3	1,098	$2 \cdot 2976$	1-14419	35
23	1	3,543	$2 \cdot 2780$	1-14314	-	39	1	792	2.2745	$1 \cdot 14447$	11
	2	10,850	$2 \cdot 2890$	1-13994	92		2	6,273	$2 \cdot 2863$	$1 \cdot 14347$	88
	3	14,866	$2 \cdot 2952$	1-13827	134		3	8,311	$2 \cdot 2908$	$1 \cdot 14305$	117
24	1	2,053	$2 \cdot 2959$	1-14413	16	40	1	795	2.2835	$1 \cdot 14431$	
	2	7,409	$2 \cdot 3585$	$1 \cdot 14284$	75		2	4,764	2.3360	1-14293	93
	3	11,369	$2 \cdot 4047$	1-14182	116		3	5,633	$2 \cdot 3479$	1-14269	106
25		1,424	$2 \cdot 2766$	1-14428	18	41	2	2,368	2.2736 2	1-14606	41
	2	6,421	$2 \cdot 2892$	$1 \cdot 14335$	82		2	$\xrightarrow{2,923}$	2.2736	1-14597	48
	3	10,752	$2 \cdot 3008$	$1 \cdot 14254$	137		3 4	15,629 18,333	2.2787 2.2799	$1-14344$ 1.14302	238
26	1	328	2.2767	$1 \cdot 14621$	10	42	1		$2 \cdot 2733$	$1 \cdot 14438$	14
	2	6,193	$2 \cdot 3406$	$1 \cdot 14428$	64		2	6,815	$2 \cdot 2749$	$1 \cdot 14356$	71
	3	8,429	$2 \cdot 3651$	$1 \cdot 14338$	96		3	8,979	$2 \cdot 2758$	1.14329	93
27	1	3,035	2.2755	$1 \cdot 14598$	-	43	1	4,317	2.2742	$1 \cdot 14423$	-
	2	4,742	2.2773	$1 \cdot 14565$	64		2	7,156	$2 \cdot 2756$	$1 \cdot 14344$	-
	3	11,083	2.2838	$1 \cdot 14427$	166		3	14,432	$2 \cdot 2789$	$1-14182$	210
	4	13,396	2.2859	$1 \cdot 14372$	190		4	20,861	$2 \cdot 2815$	$1 \cdot 14038$	312
28	1	1,130	$2 \cdot 2790$	$1 \cdot 14601$	17	44		1,094	$2 \cdot 2767$	$1 \cdot 14609$	32
	2	1,375	2.2803	$1 \cdot 14577$	22		2	1,265	$2 \cdot 2773$	$1 \cdot 14618$	35
	3	4,222	$2 \cdot 2956$	$1 \cdot 14451$	71		3	2,040	$2 \cdot 2799$	$1 \cdot 14600$	57
	4	6,202	$2 \cdot 3067$	$1 \cdot 14354$	112		4	3,642	$2 \cdot 2854$	$1 \cdot 14573$	95

of Properties of Hydrocarbons," U.S. Govt. Printing Office, 1947) ; diphenyl, 52.41 (von Auwers and Frühling, Annalen, 1921, 422, 192) ; trans-stilbene, $65 \cdot 60$, and cis-stilbene, $61 \cdot 77$ (von Auwers, Ber., 1935, 68, 1346); and trans-trans-1 : 4-diphenylbuta-1:3-diene, 85 c.c. The last value has been interpolated from $[R]_{a}$ and $[R] \beta$ given by Smedley ($K ., 1908,93,372$), and is subject to an uncertainty of $c a . \pm 2$ c.c. Everard, Hill, and Sutton (loc. cit.) inadvertently calculated $[R]$ values for the 4 -nitroand 4-dimethylamino-derivatives of 1:4-diphenylbutadiene from the refraction of the cis-cis-hydro-

Table III.
$10^{5} \Delta n_{\lambda}$.
$[R] \lambda$.

Compd.	Soln.	$\lambda: 6438$.	5461.	5086.	4800.	4358.
20	3	79	89	95	97	123
22	3	103	108	112	114	117
25	3	130	139	148	155	180
26	3	90	93	99	104	118
27	3	154	173	182	191	221
27	4	184	200	214	221	244
28	4	109	115	127	134	144
29	4	90	104	104	112	118
30	4	101	118	121	126	148
31	3	142	160	170	193	
32	3	200	241	258	284	354
33	3	147	171	188	211	269
35	3	209	233	262	288	383
36	6	175	199	211	230	292
37	4	285	314	340	-	458
39	3	105	121	131	140	164
41	4	267	290	295	311	
42	3	90	91	98	95	103
43	4	307	322	331	338	381
44	3					117
44	4	85	101	119	132	-

6438.	5893.	5461.	5086.	4800.	4358
$43 \cdot 6$	$43 \cdot 7$	$45 \cdot 1$	$46 \cdot 0$	46.7	$49 \cdot 6$
$64 \cdot 4$	$64 \cdot 4$	$65 \cdot 9$	66.9	67.5	$68 \cdot 6$
$68 \cdot 3$	$69 \cdot 4$	$69 \cdot 9$	71.2	$72 \cdot 3$	$75 \cdot 7$
$58 \cdot 5$	59.5	$59 \cdot 4$	$60 \cdot 6$	61.5	64.0
$84 \cdot 1$	$86 \cdot 1$	$87 \cdot 2$	88.9	$90 \cdot 2$	94.7
$83 \cdot 8$	$84 \cdot 9$	86.2	88.0	89.3	$92 \cdot 4$
$81 \cdot 2$	$82 \cdot 1$	$83 \cdot 1$	86.6	88.5	91.7
71.0	$72 \cdot 8$	74.0	74.4	$76 \cdot 1$	78.0
$76 \cdot 4$	78.2	80.1	$80 \cdot 9$	82.2	86.6
86.8	$88 \cdot 2$	$90 \cdot 6$	$93 \cdot 2$	98.0	
$92 \cdot 4$	$92 \cdot 7$	96.4	99.0	102.6	112.1
91.7	$94 \cdot 0$	$97 \cdot 0$	$100 \cdot 4$	$105 \cdot 1$	116.6
$96 \cdot 2$	$97 \cdot 6$	99.9	$103 \cdot 8$	$107 \cdot 4$	119.3
86.5	$87 \cdot 8$	$90 \cdot 5$	$92 \cdot 5$	$95 \cdot 5$	$104 \cdot 8$
91.9	$93 \cdot 4$	$94 \cdot 8$	$97 \cdot 1$		106.
$93 \cdot 6$	96.3	$97 \cdot 4$	99.7	101.9	107.
$64 \cdot 9$	66.0	66.7	$67 \cdot 3$	$68 \cdot 6$	
$77 \cdot 9$	$78 \cdot 8$	78.9	$80 \cdot 4$	$80 \cdot 3$	82.
$89 \cdot 9$	$90 \cdot 6$	91.7	$92 \cdot 9$	93.8	$97 \cdot$
	111.9				$155 \cdot 4$
$104 \cdot 9$	109.3	112.2	117.4	124.9	

Table IV.

Compd.	$\begin{gathered} {[R]_{\mathbf{D}},} \\ \text { obs. } \end{gathered}$	$[R]_{\mathrm{D}},$ calc.	$\mathrm{E}[R]_{\mathrm{D}}$.	D	$\longleftarrow \pm$	$[R]_{\infty}$.	$\begin{gathered} {[R]_{\mathrm{D},}, \text { calc. },} \\ -[R]_{\infty} \end{gathered}$
14	$32 \cdot 2$	-		-			-
15	$33 \cdot 2$	$35 \cdot 0$	-1.8	-	-		
16	$55 \cdot 7$	55.5	$0 \cdot 2$	-	-	-	-
17	43.9	44.3	-0.4	-	-	-	-
18	$42 \cdot 5$	41.7	0.8	-	-	-	-
19	$52 \cdot 3$	51.2	$1 \cdot 1$		-		
20	$43 \cdot 6$	$43 \cdot 1$	$0 \cdot 5$	$4 \cdot 8$	1	38.8	$4 \cdot 3$
21	$43 \cdot 1$	$43 \cdot 1$	0				
22	$64 \cdot 6$	61.3	$3 \cdot 3$	$4 \cdot 7$	1	59.9	1.4
23	$60 \cdot 5$	$60 \cdot 2$	$0 \cdot 3$	-	-	-	-
24	$57 \cdot 6$	57.8	-0.2	-	-	-	-
25	$69 \cdot 4$	$67 \cdot 1$	$2 \cdot 3$	$5 \cdot 8$	1	63.6	3.5
26	$58 \cdot 8$	59.0	-0.2	5.0	1.5	53.8	$5 \cdot 2$
27	$85 \cdot 3$	81.7	$3 \cdot 6$	$7 \cdot 5$	0.3	77.8	$3 \cdot 5$
28	$82 \cdot 1$	$77 \cdot 8$	$4 \cdot 3$	9.5	1.5	72.6	$5 \cdot 2$
29	$72 \cdot 8$	$73 \cdot 4$	-0.6	6.4	1	66.4	$7 \cdot 0$
30	78.0	76.2	1.8	$7 \cdot 6$	1	$70 \cdot 4$	$5 \cdot 8$
31	87.4	$80 \cdot 0$	$7 \cdot 4$	$10 \cdot 6$	2	76.8	$3 \cdot 2$
32	$93 \cdot 3$	$85 \cdot 5$	$7 \cdot 8$	12.3	2	81.0	$4 \cdot 5$
33	$93 \cdot 6$	85.5	8.1	$14 \cdot 3$	1.5	$79 \cdot 3$	6.2
34	~ 69.4	$71 \cdot 0$	-1.6	-		-	
35	$97 \cdot 6$	89.7	7.9	13.2	2	84.4	$5 \cdot 3$
36	$87 \cdot 8$	$80 \cdot 3$	$7 \cdot 5$	$9 \cdot 6$	1.5	78.2	$2 \cdot 1$
37	$93 \cdot 4$	$90 \cdot 1$	$3 \cdot 3$	$8 \cdot 3$	1	$85 \cdot 1$	$5 \cdot 0$
38	~ 114	86.9	27	-	-	-	-
39	96.3	$94 \cdot 7$	$1 \cdot 6$	$10 \cdot 8$	0.5	85.5	$9 \cdot 2$
40	~ 88.2	79.1	$9 \cdot 1$	-	-	-	-
41	$65 \cdot 8$	(59.2)	(6.6)	$4 \cdot 4$	0.5	61.4	(-2.2)
42	78.7	80.0	-1.3	$3 \cdot 7$	1	$75 \cdot 0$	5.0
43	$90 \cdot 6$	90.7	-0.1	$5 \cdot 6$	0.5	$85 \cdot 0$	$5 \cdot 7$
44	109.1	99.7	9.4	14.3	4	$94 \cdot 8$	$4 \cdot 9$

carbon, instead of the trans-trans one. The distortion polarisation used for 4-dimethylamino-2': 4': $\mathbf{4}^{\prime}$ trimethylstilbene was based on $[R]_{\mathrm{D}}$ for 2:4:6-trimethylstilbene.

The uncertainties in the dipole-moment values caused by errors in experimental observation only are estimated not to exceed $\pm 0.02 \mathrm{D}$., save for 2 -dimethylaminostilbene ($\pm 0.05 \mathrm{D}$.), 3-cyanostilbene, of which only enough to make up one solution was available ($\sim \pm 0.05 \mathrm{D}$.), and the hydrocarbons, which are considered separately.

All dipole moments are in Debye units, and all refractions, etc., in c.c.
Results.-These are presented as before ($J ., 1951,16$). To save space and facilitate cross-referencing, each compound has been allotted an identity number, printed in Clarendon type; the key to the numbering will be found in Tables V and VI. Also, each solution of compounds 15-44 has been numbered
(key: Table II) to save repeating concentrations in Table III. Derivatives of each hydrocarbon are arranged alphabetically, those of benzene appearing first, then of styrene, then of diphenyl, then of stilbene, and finally of diphenylbutadiene.

Table V.							
	ε_{1}^{\prime}.	a.	$v_{1}{ }^{\prime}$.	$-10^{3} \beta$.	${ }_{\text {r }} \times$.	$\begin{aligned} & {[R]_{\mathbf{D}},} \\ & \text { calc. } \end{aligned}$	μ.
1 Styrene	$2 \cdot 2726$	$0 \cdot 126$	$1 \cdot 14494$	31	$37 \cdot 0$	36.5	<0.3
2 4-Acetylstilbene	2-2728	$5 \cdot 396$	1-14508	242	285.5	$75 \cdot 8$	3.20
3 2-Aminostilbene	$2 \cdot 2727$	1.663	1-14497	212	$115 \cdot 4$	70-1	1.49
4 3-Aminostilbene	$2 \cdot 2725$	1.782	$1-14507$	263	116.8	70-1	1.51
5 4-Aminostilbene	2-2727	2.833	$1 \cdot 14486$	224	157.7	$70 \cdot 1$	$2 \cdot 07$
6 4-Cyanostilbene	2-2727	10.788	1-14539	261	$470 \cdot 7$	71-0	$4 \cdot 42$
7 2-Dimethylaminostilbene	2.2729	0.921	1-14502	171	103.5	$80 \cdot 3$	1.07
8 3-Dimethylaminostilbene	2-2728	1.773	$1 \cdot 14497$	200	$137 \cdot 3$	$80 \cdot 3$	1.67
9 4-Dimethylamino-2' : 5^{\prime}-dimethylstilbene	$2 \cdot 2728$	$2 \cdot 697$	$1 \cdot 14522$	189	199.2	$90 \cdot 1$	$2 \cdot 31$
10 4-Dimethylamino- 2 '-ethylstilbene ...	$2 \cdot 2726$	2.964	1.14504	177	212.7	90.1	$2 \cdot 45$
11 4-Dimethylamino-2'-methylstilbene	2.2728	3.261	$1 \cdot 14512$	184	213.6	$85 \cdot 2$	2.51
12 4-Nitrostilbene	$2 \cdot 2727$	10.342	$1 \cdot 14498$	264	497.5	$72 \cdot 2$	4.56
13 1-p-Nitrophenyl-4-phenylbuta-1:3-diene	2-2724	10.365	$1 \cdot 14498$	309	552.6	$91 \cdot 6$	4.75

Table VI.

	$\varepsilon_{1}{ }^{\prime}$.	a.	v_{1}.	v_{1}^{\prime}.	$-10^{3} \beta$.	$10^{3} \gamma$.	${ }_{\mathrm{T}} P$.	
14 Benzonitrile	$2 \cdot 2728$	$17 \cdot 316$	$1 \cdot 14462$	1-14461	147	32	366.7	4.05
15 p-Phenylenediamine	$2 \cdot 2726$	2.939	$1 \cdot 14650$	1-14653	300	104	$87 \cdot 1$	1.60
$16 N N N^{\prime} N^{\prime}$-Tetramethyl- p-phenylenediamine \qquad	$2 \cdot 2727$	0.997	1-14609	1-14608	116	66	$81 \cdot 2$	$1 \cdot 12$
17 4-Bromostyre	$2 \cdot 2727$	1.515	$1 \cdot 14465$	$1 \cdot 14465$	420	48	$91 \cdot 7$	1.52
18 4-Chlorostyrene	$2 \cdot 2728$	1.902	1-14471	1-14470	217	60	$87 \cdot 9$	1.50
19 4-Dimethylaminos	$2 \cdot 2728$	$3 \cdot 698$	$1 \cdot 14462$	$1 \cdot 14460$	126	99	$147 \cdot 0$	$2 \cdot 17$
20β-Nitrostyrene	$2 \cdot 2724$	$15 \cdot 009$	$1 \cdot 14655$	1-14652	335	97	457.2	4.50
21 4-Nitrostyrene	2-2727	$13 \cdot 196$	1-14465	1-14644	283	64	$408 \cdot 6$	4.23
22 Benzidine	$2 \cdot 2728$	1.943	$1 \cdot 14650$	1-14652	302	178	113.6	1.60
23 4-Bromodiphenyl	$2 \cdot 2726$	1.512	1-14467	$1 \cdot 14467$	432	88	$115 \cdot 9$	1.65
24 4-Cyanodiphenyl	$2 \cdot 2725$	11.630	1-14470	1-14468	251	104	$440 \cdot 0$	4.33
25 4-Dimethylaminodiph	$2 \cdot 2727$	2.599	$1 \cdot 14465$	$1 \cdot 14461$	193	127	152.4	2.04
26 4-Nitrodiphenyl	$2 \cdot 2729$	10.936	1-14636	$1-14635$	347	107	$457 \cdot 3$	$4 \cdot 41$
$27 \times N N^{\prime} N^{\prime}$-Tetramethylbenzidine	$2 \cdot 2726$	0.998	$1 \cdot 14661$	1-14664	215	144	111.7	1.21
28 4-Amino-4'-bromostilbene	$2 \cdot 2728$	$5 \cdot 458$	$1 \cdot 14650$	1-14649	475	180	$336 \cdot 3$	$3 \cdot 56$
29 4-Bromostilbene	2-2728	1.503	1-14526	$1 \cdot 14526$	408	114	$130 \cdot 2$	1.67
30 cis-4-Bromo-4'-nitrostilbene	$2 \cdot 2724$	7.579		1-14520	479	108	$494 \cdot 2$	$4 \cdot 52$
31 trans-4-Bromo-4'-nitrostilbene	$2 \cdot 2728$	$3 \cdot 792$	1-14465	1-14462	479	161	$277 \cdot 3$	$3 \cdot 11$
32 2-Chloro-4'-dimethylaminostilbene	$2 \cdot 2726$	3.353	1-14459	1-14456	280	190	229.0	$2 \cdot 65$
33 4-Chloro-4'-dimethylaminostilbene	$2 \cdot 2728$	$7 \cdot 216$	1-14465	1-14468	290	197	$415 \cdot 6$	4.02
34 3-Cyanostilbene		$9 \cdot 34$	1-14467		244	130	416	$4 \cdot 12$
35 4-Diethylaminostilbene	$2 \cdot 2728$	$3 \cdot 483$	1-14465	1-14462	174	181	$237 \cdot 5$	$2 \cdot 69$
36 4-Dimethylaminostilbene	$2 \cdot 2729$	$3 \cdot 220$	1-14526	$1 \cdot 14526$	193	201	198.6	$2 \cdot 41$
37 4-Dimethylamino-2: 2'-dimethylstilbene	2-2728	$2 \cdot 561$	1-14459	$1 \cdot 14457$	173	159	193.9	$2 \cdot 25$
38 4-Dimethylamino-4'-nitrostilbene	$2 \cdot 2726$	22.731	1-14459	1-14459	360	342	$1210 \cdot 4$	$7 \cdot 42$
39 4-Dimethylamino-2': 4' : 6'-trimethylstilbene	$2 \cdot 2728$	$2 \cdot 170$	1-14455	1-14459	182	141	184.5	$2 \cdot 11$
40 4-Methoxy-4'-nitrostilbene	$2 \cdot 2728$	13.309	1-14459	$1 \cdot 14458$	341	192	$700 \cdot 5$	$5 \cdot 5$
41 Stilbene	$2 \cdot 2726$	$0 \cdot 394$	1-14655	1-14654	194	151	$64 \cdot 4$	(0)
42 2:4:6-Trimethylstilbene	2.2728	$0 \cdot 327$	1-14450	1-14452	138	105	$80 \cdot 4$	<0.4
43 Triphenylethylene	$2 \cdot 2726$	$0 \cdot 431$	-	1-14516	230	149	$90 \cdot 6$	<0.3
44 l-p-Dimethylaminophenyl-4-phenyl- buta-1:3-diene	$2 \cdot 2728$	3.468	1-14630	1-14631	158	260	236.0	2.58

Discussion.

Table IV gives some values of the exaltations of molar refractions for Na_{D} light, expressed as $\mathrm{E}[R]_{\mathrm{D}}=[R]_{\mathrm{D}}$, obs., $-[R]_{\mathrm{D}}$, calc. The calculated values have been obtained, not from atomic refractions as is sometimes done, but from the refraction of the parent hydrocarbon plus a value for each of the substituents; and the latter is taken as the difference between the refractions of the benzene derivative and of benzene itself.

Because atom polarisations (${ }_{A} P$) cannot often be measured, it is often assumed that the error in neglecting them is just balanced by the error arising from failure to extrapolate molar refractions to infinite wave-length in order to obtain the true electron polarisation, ${ }_{\mathrm{E}} P$. The second error is equal to the molar dispersion, $\mathbf{D}=[R]_{\mathrm{D}}-[R]_{\infty}$, as it was defined by Bauer
and Fajans (J. Amer. Chem. Soc., 1942, 64, 3023). Some of the exaltations in Table IV are sufficiently large as to suggest that the approximation, $\Delta P=\mathrm{D}$, is invalid.

Just as the approximation is unreliable when ${ }_{\Delta} P$ is abnormally large (Coop and Sutton, J., 1938, 1269), so with D. It has been suggested (Everard, Hill, and Sutton, Trans. Faraday Soc., 1950, 46, 417) that the best compromise in these circumstances is to take as the distortion polarisation $\left({ }_{\mathbf{E}} P+{ }_{\Delta} P\right.$) the calculated value of $[R]_{\mathrm{D}}$ (as defined above). If this is done, the allowance implicitly made for ${ }_{A} P$ is $[R]_{\mathrm{D}}$ (calc.) $-[R]_{\infty}$. When this quantity is calculated for the 18 compounds in this series for which the necessary data exist, it is found in 15 cases to be 5 ± 2 c.c. (Table IV). This seems a more reasonable estimate of the atom polarisation of such compounds as these than the larger and more variable one of $4-14$ c.c. provided by the quantity \mathbf{D}.

It is important to note that, if calculated $[R]_{\mathfrak{D}}$ values are used for distortion polarisations, they should not be based on atomic refractions except for very simple compounds. For example, Angyal and Le Fèvre have given the calculated molar refraction of anthranyl methyl ether (9 -methoxyanthracene) as $61 \cdot 5$ c.c. (J., 1950, 562), which is lower than both the observed refraction and the total polarisation of anthracene itself [67 and 67.9 c.c., respectively (Campbell, Le Fèvre, Le Fèvre, and Turner, J., 1938, 404). Steiger, however, gives the former as $65 \cdot 4$ c.c. (see Ber., 1923, 56, 998, and references therein)]. It should be ca. 6 c.c. higher $\left\{\mathrm{cf} .[R]_{\mathfrak{p}}\right.$ (obs.) for $9: 10$-dimethoxyanthracene, $79 \cdot 8$ c.c.; Everard and Sutton, J., 1951, 16\}. The discrepancy arises from the use of atomic refractions, and leads to a dipole moment value 0.2 too high.

Comparison with Previous Work.-In Table VII are given the dipole moments of compounds which have been examined before, under μ (ii), together with the values obtained in the present work, under μ (i), for comparison.

Compound.	μ (i.)	(ii.) ${ }^{\mu}$	References and remark
Styrene	<0.3	$0-0.37$	"Tables'"; von Hippel and Wesson, Ind. Eng. Chem., 1946, 38, 1121.
4-Bromostyrene	1.52	1.35	Otto and Wenzke, J. Amer. Chem. Soc., 1935, 57, 294.
4-Chlorostyrene	1.50	1.28	Idem, ibid.
β-Nitrostyrene	$4 \cdot 50$	4-27, $\ddagger 4 \cdot 48$	Goebel and Wenzke, ibid., 1938, 60, 697; Bergmann, J., 1936, 402.
Benzonitrile	4.05	3.74-4.02	11 Values in benzene, all $\geqslant 15$ years old : " Tables."
p-Phenylenediamine	1.60	0-1.56	Very discordant values: "Tables."
Tetramethyl- p-phenylenediamine	1-12	1.23	Weissberger and Sängewald, Z. physikal. Chem., 1929, B, 5, 237.
Tetramethylbenzidine	1.21	1.25	Idem, ibid.
Benzidine	1.60	1.3-1.43	"Tables"; Sahney, Beri, Sarna, and Singh, J. Ind. Chem. Soc., 1949, 26, 329.
4-Bromodiphenyl	1.65	1.64	Le Fèvre and Le Fėvre, J^{\prime}., 1936, 1130.
4-Nitrodiphenyl	$4 \cdot 41$	4-17, 4.28	Idem, ibid.; Næshagen, Z. physikal. Chem., 1934, B, 25, 157. The cause of the discrepancy is obscure.
Stilbene	(0)	0	Eide and Hassel, Tids. Kjemi Berg., 1930, 10, 93; Smyth and Dornte, J. Amer. Chem. Soc., 1931, 53, 1296.
Triphenylethylene	<0.3	$0 \cdot 6$	Idem, ibid.
4-Dimethylamino-4'-nitrostilbene	$7 \cdot 42$	$8 \cdot 3$ §	Weizmann, Trans. Faraday Soc., 1940, 36, 978. This value is based on one very dilute solution only.
4-Methoxy-4'-nitrostilbene	$5 \cdot 51$	$7 \cdot 8$	Idem, ibid. An $\varepsilon-\omega$ plot of the earlier work is much more erratic than that now obtained.
* These measurements were carried out in benzene solution unless otherwise stated,			
Press, 1948. \ddagger Measured in dioxan.			§ Measured in l-methylnaphthalene.

The Choice of Dipole Moment Values from the Literature.-In this series of papers it has been necessary to select a considerable number of dipole moment values from the literature. Examination of any tables of dipole moments (e.g., Wesson, op. cit., Technology Press, 1948) reveals a most troublesome degree of disagreement between the measurements of different investigators; and until recently, few attempts have been made to elucidate the causes of disagreement. Some of the discrepancies are, of course, due to solvent effects, but they often occur even between measurements with the same solvent at the same temperature. The chief causes (apart from the use of impure materials and unsuitable technique or apparatus) are the computation of
polarisations at infinite dilution by unreliable methods [the importance of this has recently been stressed by Everard, Hill, and Sutton (Trans. Faraday Soc., 1950, 46, 417), inter al.], the different allowances made by different investigators for atom polarisation, and the use of values of the universal constants \boldsymbol{N} and \boldsymbol{k} which have since been revised.*

Discrepancies due to these three causes, which are to be especially suspected in early work, can always be corrected a posteriori, provided that experimental details are published. Recalculation is arduous, however, and has been attempted only on a very limited scale (e.g., by Halverstadt and Kumler, J. Amer. Chem. Soc., 1942, 64, 2988, and by Smith and Cleverdon, Trans. Faraday Soc., 1949, 45, 109). Consequently, no critical tables of dipole moments exist, and users of ordinary tables are obliged to exercise personal judgment or else to re-examine compounds themselves.

We give the following general rules as a guide, though fortunately they do not always apply : (i) Certain moments in solution have been given to as many as four decimal places; the third and the fourth should be ignored. (ii) Moments >1 required accurate to $< \pm 0 \cdot 1$ should be recalculated (if previously obtained from the extrapolation of polarisation-concentration graphs); those <1 required accurate to $< \pm 0 \cdot 1$, and those >1 required accurate to $< \pm 0.05$

Table VIII.
Dipole moments in benzene solution at 25°.

Group :	NO_{2}.	Ac.	CN.	NH_{2}.	NMe_{2}.	Br .	Cl.	F.	I.	Me.
Alkyl derivative	$3 \cdot 25$	2.75	$3 \cdot 60$	1.32	0.86	$2 \cdot 00$	2.01	1.89	1.92	0
Range of uncertainty...	3.1-	± 0.05	3.5-	$\pm 0 \cdot 05$?	$\pm 0 \cdot 1$	$\pm 0 \cdot 1$?	$\pm 0 \cdot 1$	
No. of vals. published a	$3 \cdot 3$ 4	25	3.65 7	9	1	22	14	2	16	
Phenyl derivative	$4.01{ }^{\text {b }}$	$2.96{ }^{\text {c }}$	$4.05{ }^{\text {d }}$	$1.52{ }^{\circ}$	$1.61{ }^{\prime}$	$1.57{ }^{\circ}$	$1.60{ }^{h}$	$1.48{ }^{i}$	$1.42{ }^{3}$	$0.35{ }^{k}$
Range of uncertainty...	$\begin{gathered} 3.98 \\ 4.02 \end{gathered}$	± 0.02	± 0.01	± 0.01	± 0.01	± 0.02	± 0.01	± 0.01	± 0.01	± 0.05

[^0] Soc., 1933, 55, 453) and 0.37 (Baker and Groves, J., 1939, 1144).
should be remeasured with suitable precautions. (iii) Moments <0.4 are indistinguishable from zero.

Further information about the reliability of a measurement can be obtained by plotting a dielectric constant-concentration graph, and seeing whether it extrapolates to the ε_{1} value which the authors give; if not, unless Halverstadt and Kumler's method of computation (loc. cit.) had been used, the moment quoted is likely to be unreliable. Also, except for highly polar compounds, a marked (apparent) dependence of polarisation on concentration is usually indicative of error.

All dipole-moment values taken from the literature and cited in this series of papers have been recalculated, where possible and useful, from the experimental observations on which

[^1]they were based, the same assumptions being used about $\boldsymbol{N}, \boldsymbol{k}$, and ${ }_{\mathrm{D}} P$ as have been made in treating the measurements reported in this paper for the first time.

It is convenient to collect together some of these values which are used in Parts II-VI, viz., those which refer to monosubstituted derivatives of paraffin hydrocarbons and of benzene (Table VIII). The former set does not refer to the derivatives of any particular paraffin, because it is needed in the estimation of mesomeric moments; so greater weight has been attached, when practicable, to observations on compounds with large groups, which might be expected to have much the same electrostatic polarisability as a benzene ring.

Dipole Moments of Stilbene, 2:4:6-Trimethylstilbene, Triphenylethylene, and Styrene-The total polarisation of stilbene is $64.4 \pm 0.5 ;[R]_{\mathrm{D}}$ exceeds this by 1.4 ; and $[R]_{\infty}$ is 61.4 ± 0.5. It is clear that D exceeds ${ }_{\Delta} P$. The atom polarisation of a molecule such as this may be estimated additively (Coop and Sutton, J., 1938, 1269; Audsley and Goss, J., 1941, 864). That of ethylene is 0.4 (Watson and Ramaswamy, Proc. Roy. Soc., 1936, A, 156, 144), and that of benzene is $1 \cdot 5$ [from ${ }_{r} P$ and $[R]_{\infty}$ of liquid. However, Groves and Sugden give $1 \cdot 1$ (J., 1934, 1094), and Cartwright and Errera, 0.55 (Acta Physicochim. U.R.S.S., 1935, 3, 649)]. Hence, that of stilbene should be ca. 3.4. As ${ }_{T} P-[R]_{\infty}$ is $3.0,{ }_{0} P$ is evidently very near to zero. Such non-polarity is, of course, in accordance with the symmetrical nature of the molecule as shown by X-ray examination (Robertson and Woodward, Proc. Roy. Soc., 1937, A, 162, 568).

In contrast, the total polarisations of 2:4:6-trimethylstilbene (80.4 ± 1) and of triphenyl ethylene $(90 \cdot 6 \pm 0.8)$ are not less than their $[R]_{\text {d }}$ (obs.) values (78.7 and $90 \cdot 6$, respectively) : their $[R]_{\infty}$ values are $75 \cdot 0 \pm 1$ and $85 \cdot 0 \pm 1$, so the values of ${ }_{T} P-[R]_{\infty}$ are $5 \cdot 4$ and $5 \cdot 6$. Calculated atom polarisations are 3.7 and 4.9 (each methyl group is regarded as contributing $0 \cdot 1$: Audsley and Goss, loc. cit.). It is therefore possible that these two unsymmetrical molecules may be slightly polar (moments of >0.4 and $\ngtr 0.3$, respectively).

The exaltation of $2: 4: 6$-trimethylstilbene is 1.3 less than that of stilbene, which indicates that there is less conjugation. That of triphenylethylene is about the same, suggesting that the introduction of an extra phenyl group does not here increase the conjugation. These two facts can be readily ascribed to steric influences which would cause the systems to be noncoplanar (cf. Part II).

The total polarisation of styrene is $37.0 \pm 0 \cdot 3$. Extrapolation of the molar refractions given in Landolt-Börnstein's "Tabellen" yields the value 34.5 for $[R]_{\infty}$. The calculated atom polarisation is 1.9 ; whence the moment is 0.17 , though unavoidable uncertainties make any value up to 0.3 possible. Von Hippel and Wesson obtain the value of 0.12 ± 0.03 by the dielectric-loss method (Ind. Eng. Chem., 1946, 38, 1121); this value is probably more reliable than any obtainable in the orthodox manner (see, however, Heston and Smyth, J. Amer. Chem. Soc., 1950, 72, 99, and Whiffen, Trans. Faraday Soc., 1950, 46, 124, for a possible complication). Torkington has concluded from the infra-red spectrum of styrene that " there is a resultant negative charge on the terminal carbon atom of the vinyl group . . . which will be associated with meta-substitution in the phenyl nucleus" (Nature, 1949, 163, 179). An indirect argument that styrene has a moment of ca. $0 \cdot 12$ (vinyl group negative) is given in Part IV. The balance of evidence, then, is that styrene is a slightly polar molecule.

This result is of considerable theoretical interest, because, according to simple molecularorbital theory, alternant hydrocarbons (such as the above) should be non-polar (Coulson and Rushbrooke, Proc. Camb. Phil. Soc., 1940, 36, 193). However, Laforgue (J. Chim. physique, $1951,48,17$) has very recently refined the earlier calculations by applying ten different kinds of correction, and has obtained a moment of $0 \cdot 15$ for styrene, the vinyl group being negative. The agreement with the experimental value is very satisfactory, though it should be remembered that the range of uncertainty in each is large.

[^0]: - Sources: Wesson, op. cit.; Few and Smith, J., 1949, 2663; Barclay, Le Fèvre, and Smythe, Trans. Faraday Soc., 1951, 47, 357. bitrobenzene has been the subject of a detailed investigation by Smith and Cleverdon (Trans. Faraday Soc., 1949, 45, 109), who, however, make a large allowance for atom polarisation. We take their value for ${ }_{\mathrm{r}} P$, but put ${ }_{\mathrm{D}} P=[R]_{\mathrm{D}}$. Le Fèvre (ibid., 1950, 46, 1) has measured no fewer than 111 solutions, divided into three sets, but fails to get internal consistency (${ }_{\mathrm{T}} P$ values of $354 \cdot 8,356 \cdot 1$, and $358 \cdot 6$ c.c.). © Bentley, Everard, Marsden, and Sutton, J., 1949, 2957. Le Fèvre and Le Fèvre give 2.89 (J., 1950, 1829), but this value is clearly a mistake for 2.97 (confirmed by personal communication). "Present work. - Le Fèvre, Roberts, and Smythe have measured 13 solutions, giving $\mu=1.51$, ($J, 1949,902$), and Few and Smith, 16 solutions, giving $\mu=1.52$, (ibid., p. 753); recalculated. ${ }^{\prime}$ Few and Smith (ibid.); Marsden and Sutton ($J ., 1936$, 599) ; recalculated. Barclay, Le Fèvre, and Smythe (loc. cit.). © Otto and Wenzke (Ind. Eng. Chem. Anal., 1934, 6, 187) and Le Fevvre and Le Fèvre ($J ., 1936,1130$); recalculated. Brown and De Vries
 Soc., 1942, 64, 830) and Spinrad (ibid., 1946, 68, 617); recalculated. Brown and De Vries (loc. cit.). i Leonard and Sutton (ibid., 1948, 70, 1564) give $1-46$ ($1 \cdot 48$, recalculated), the value 1.53 given in this paper being a misprint for 1.43 ; Freiser, Hobbs, and Gross (ibid., 1949, 71, 111) give 1-47. Le Fèvre and Le Fèvre give 1.48 (recalculated), and Brown and De Vries, 1.50 (locc. cit.). ; Saxby, personal communication. This value differs markedly from previous ones. k This value, being small, is difficult to fix with certainty. Le Fèvre, Le Fèvre, and Robertson give 0.34, but no details (J., 1935, 480). Dielectric-loss measurements give $0.30-0.32$ (Whiffen and Thompson, and Cripwell and Sutherland, Faraday Soc. Discussion on "Dielectrics," 1946, pp. 114, 122, 149). Vapour-phase measurements (probably comparable in this case) give 0.35 (McAlpine and Smyth, J. Amer. Chem.

[^1]: *We take $N=6.0226 \times 10^{23} \mathrm{~mole}^{-1}$ and $k=1.3806 \mathrm{erg}$ deg. ${ }^{-1}$ (Kaye and Laby, "Physical and Chemical Constants," Longmans, Green \& Co., 10th edn., 1948), giving $\mu=0.2212 \sqrt{0}_{0} P$ at 25°; the latest revision (Bearden and Watts, Physical Rev., 1951, 81, 73) does not alter this.

